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Abstract

Introduction: Neuroimaging heterogeneity in dementia has been examined using sin-

gle modalities. We evaluated the associations of magnetic resonance imaging (MRI)

atrophy and flortaucipir positron emission tomography (PET) clusters across the

Alzheimer’s disease (AD) spectrum.

Methods:We included 496 Alzheimer’s Disease Neuroimaging Initiative participants

with brainMRI, flortaucipir PET scan, and amyloid beta biomarker measures obtained.

Weapplied anovel robust collaborative clustering (RCC) approachon theMRI and flor-

taucipir PET scans. We derived indices for AD-like (SPARE-AD index) and brain age

(SPARE-BA) atrophy.
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#Data used in the preparation of this article

were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators

within the ADNI contributed to the design and

implementation of ADNI and/or provided data

but did not participate in the analysis or

writing of this report. A complete listing of

ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/

ADNI_Acknowledgement_List.pdf
†This article was published posthumously.
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Results: We identified four tau (I–IV) and three atrophy clusters. Tau clusters were

associated with the apolipoprotein E genotype. Atrophy clusters were associated with

white matter hyperintensity volumes. Only the hippocampal sparing atrophy cluster

showed a specific association with brain aging imaging index. Tau clusters presented

stronger clinical associations than atrophy clusters. Tau and atrophy clusterswere par-

tially associated.

Conclusions: Each neuroimaging modality captured different aspects of brain aging,

genetics, vascular changes, and neurodegeneration leading to individual multimodal

phenotyping.
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1 INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia.

However, most subjects with dementia have multiple contributing

pathologies.1,2 In addition, multiple deposition patterns have been

described for neurofibrillary tangles, such as hippocampal sparing and

limbic predominant patterns.3–6 This heterogeneity is in line with

the different clinical presentations related to AD neuropathological

changes.5,7,8 This heterogeneity is likely the result of individual genetic

susceptibility (with apolipoprotein E [APOE] explaining the largest

heritability),9 diverse environmental risk factors encountered during

the lifetime, comorbidities, and the protective effect of the cognitive

reserve.10–13

Structuralmagnetic resonance imaging (MRI) quantifies graymatter

thickness or volume independently of the etiology. Gray matter analy-

seshave identified variousbrain atrophypatterns inADpatients,which

are associated with different rates of clinical progression. These dif-

ferent patterns are likely the results of differences in regional pathol-

ogy distribution and variable presence of co-pathologies.6,14–16 MRI

scans also quantify white matter hyperintensities (WMH), an imaging

marker of small vessel disease that increaseswith aging and in vascular

cognitive impairment. WMHs present a higher burden in AD demen-

tia subjects.17–20 One advantage and limitation of structural MRIs is

that they quantify brain changes resulting from the multiple patholo-

gies present in the brain, which are therefore not specific. Recently,

in vivo molecular biomarkers that bind specific protein deposits have

been developed.21 These positron emission tomography (PET) ligands

can specifically quantify different proteins deposited in the brain. Amy-

loid beta (Aβ) PET has been available for almost two decades, whereas

tau tracers have been introduced more recently and are being char-

acterized. Tau neurofibrillary tangles, measured by flortaucipir PET

scans, are more closely correlated with cognitive changes in neu-

ropathologic studies,22 and recent imaging studies have confirmed this

association.23 These imaging modalities capture disease processes at

different stages with tau accumulation preceding brain atrophy.24

Advanced analytical techniques can be applied to these images

to discover heterogeneous patterns across the AD continuum using

data-driven clustering techniques.6 These approaches have identi-

fied MRI atrophy patterns6,10 and, more recently, tau-derived imaging

clusters.25 However, to our knowledge, the relationship between data-

driven clusters derived independently for structural MRI and flortau-

cipir PET scans have not been studied in the same subjects. To eval-

uate the heterogeneity across the complete AD spectrum, we stud-

ied Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants

with pathological Aβ biomarker values independently of their cognitive

status. We hypothesize that there will be (1) an association between

flortaucipir PET and MRI-derived clusters, albeit with an incomplete

overlap in pattern captured with both imaging modalities, due to their

different specificities, (2) genetic factors and WMH will modify the

associations between the clusters differently because theymight exert

a stronger effect on specific brain changes, and (3) tau-derived clus-

ters will have a stronger association with clinical progression based

on the previous region of interest–derived findings. To evaluate these

hypotheses, we analyzed flortaucipir PET binding and MRI-measured

gray matter atrophy in a large clinical cohort using an advanced unsu-

pervised clusteringmachine learningmethod.26

2 METHODS

2.1 Participants and clinical testing

See ADNI cohort goals in the supporting information. A total of 496

ADNI participants with flortaucipir PET scans, MRI scans, and cere-

brospinal fluid (CSF) Aβ1-42 or florbetapir PET Aβ testing during the

same study visit were included (Table 1). Participants had repeated

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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neuropsychological and clinical assessments yearly. Median follow-up

was 105.7 weeks (interquartile range [IQR]: 0 to 361.3 weeks). Fur-

ther details on the clinical core, recruitment, and diagnostic methods

have been previously published,27,28 and details can be found at http://

adni.loni.usc.edu/. We included in this study cognitively unremarkable

(CU) participants with negative Aβ biomarker values (Aβ–) as a refer-
ence. CU, mild cognitive impairment (MCI), and dementia participants

withpositiveAβbiomarker values (Aβ+)were included in the clustering
analyses. All the data is available at http://adni.loni.usc.edu/. All partic-

ipants provided informed consent.

2.2 MRI and PET acquisition and processing

3T sagittal magnetization-prepared rapid gradient echo scans for each

subject were selected at the same clinical visit as the flortaucipir scan

and were segmented and parcellated with FreeSurfer (v 5.3).29 WMH

volumewas estimated as previously described.30 Additional details for

the imaging processing can be found on theADNIwebsite (http://www.

adni-info.org/).

The Spatial Pattern of Abnormality for Recognition of Early

Alzheimer’s Disease31 (SPARE-AD) index is an imaging signature used

to estimate AD-like atrophy patterns in the brain and has been pre-

viously validated.32,33 The Spatial Pattern of Atrophy for Recognition

of Brain Aging (SPARE-BA) model34 is a multivariate pattern regres-

sion model based on support vector regression to predict individual-

izedbrain, capturing typical versus atypical or advancedbrain aging, for

each participant.34 The brain age gap was calculated as the difference

between SPARE-BA and age. See supporting information for additional

details.

For the florbetapir composite score, means from the gray mat-

ter in subregions were extracted within four large regions (frontal,

anterior/posterior cingulate, lateral parietal, lateral temporal),35,36 and

weightedmeans for each of the fourmain regionswere created. A com-

posite was used as a reference region, based on the whole cerebellum,

brain stem/pons, and eroded subcortical white matter.

See supporting information and the ADNI website (http://adni.loni.

usc.edu/) for information on flortaucipir and florbetapir PET scan pro-

cessing.

2.3 Cerebrospinal fluid collection and Aβ1-42
measurements

CSF samples were obtained in the morning after an overnight fast

and processed as previously described37,38 (http://adni.loni.usc.edu/).

Roche Elecsys Aβ1-42 CSF immunoassay measurements were per-

formed at the University of Pennsylvania/ADNI biomarker laboratory

following the Roche Study protocol.22 The cutoff for abnormal Aβ1-42
was 977 pg/ml.39 Measurements performed during the same ADNI

yearly visit were selected (12 days median time interval between CSF

draw and PET scans).

RESEARCHCONTEXT

∙ SystematicReview:WesearchedPubMedusing the terms

“Alzheimer’s disease,” “PET,” “MRI,” and since January

1, 1990. Unsupervised clustering of positron emission

tomography and magnetic resonance imaging in the same

participants and differential association with genetics,

brain aging, and vascular pathology has not been explored.

∙ Interpretation: We identified a differential contribution

of genetics and white matter hyperintensities to tau

and atrophy clusters, respectively. We also included our

machine learning-based indices to evaluate Alzheimer’s

disease (AD) and brain aging patterns. We showed how

one of the atrophy clusters (hippocampal sparing) had less

AD-like andmore brain aging atrophy patterns.

∙ Future Directions: Our data-driven approach demon-

strated the importance of multimodal imaging to cap-

ture pathological aspects of neurodegeneration. Future

extensions include additional biomarkermodalities to pro-

vide sophisticated personalized predictions of individuals’

brain injury. This approach will inform and enrich future

clinical trials.

2.4 Robust collaborative clustering approach

The robust collaborative clustering (RCC) approach exploits correla-

tions between the subjects and the features while reducing the influ-

ence of noise and outliers, thus achieving robustness against noise in

the data.26,40 RCC uses thematrix tri-factorization technique to simul-

taneously cluster subjects and features into heterogeneous groups.

The grouping information of features facilitates the clustering of sub-

jects and vice versa. RCC views the matrix tri-factorization as a dictio-

nary learning procedure and further integrates sparsity regularization

into the system for data denoising to solve the optimization problem.26

RCC improves both the clustering of subjects and the features (here,

regionalMRI volumes and flortaucipir standardizeduptake value ratios

[SUVRs], respectively) by incorporating the interaction of subject clus-

tering and feature clustering. The RCC algorithm was implemented

in MATLAB, in which the matrix tri-factorization module used the

toolbox.41 See supporting information for additional details. RCC can

be downloaded from https://github.com/UTHSCSA-NAL/RCC-Code.

git. Clusters are presented in Figures 1 and 2.

2.5 Statistical analysis

The demographic table includes median and IQR values. Group com-

parisons were performed applying Kruskal-Wallis analyses for quan-

titative variables and Chi-square tests for categorical variables in

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://www.adni-info.org/
http://www.adni-info.org/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://github.com/UTHSCSA-NAL/RCC-Code.git
https://github.com/UTHSCSA-NAL/RCC-Code.git
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F IGURE 1 Flortaucipir tau PET (A) andMRI atrophy (B) clusters. A, Regions with greater (red-yellow) flortaucipir PET SUVRs compared to the
Aβ– cognitively unremarkable (CU) participants (reference). B, Regions with greater (red-yellow) and lower (blue-green)MRI-defined atrophy
compared to the Aβ– CU participants (reference). Color-scale reflects log-scales t-score. Aβ, amyloid beta; HSp, hippocampal sparing; LP, limbic
predominant; MRI, magnetic resonance imaging; PET, positron emission tomography; SUVR, standardized uptake value ratio

Table 1. Power transformations were used in further analyses to nor-

malize the distribution of quantitative variables as needed. Post hoc

comparisons between groupswere computed using Tukey’s honest sig-

nificance differences. Clinical progression from CU to MCI/dementia

and a second model for MCI to dementia was evaluated using Cox

proportional hazards models that include sex and age as predictors,

together with the imaging clusters, and we present hazard ratio (HR)

values. Longitudinal changes inAlzheimer’sDiseaseAssessmentScale–

13-item cognitive subscale (ADAS-Cog13) were evaluated using lin-

ear mixed-effects models with imaging clusters, clinical diagnosis, sex,

and age as fixed effects. Subjects and time were included as random

effects (nlme R package). Associations between atrophy and tau clus-

ters were evaluated with multinomial logistic regression models; we

evaluated if each of the clusters within a modality predicted the clus-

ters in the other imaging modality (e.g., if the diffuse atrophy cluster

was associated with a greater probability of belonging to tau cluster

II versus cluster I, compared to the other two atrophy clusters). We

includedAPOE ε4 presence andWMHvolume as predictors.We used a
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F IGURE 2 Flortaucipir tau PET subclusters and cluster modeling. A, Subclusters originated from further clustering of tau cluster I. Regions
with greater (yellow-red) and lower (blue-green) AV-1451 PET binding compared to the Aβ-posterior cluster (reference). Color-scale reflects
log-scales t-score. B, Multimodal evaluation of biomarker heterogeneity in subjects across the Alzheimer’s disease spectrum. Neuroimaging
modalities present different associations with vascular and genetic risk factors Aβ, amyloid beta; MRI, magnetic resonance imaging; PET, positron
emission tomography

backward selection model to include all predictors to select the best

model. Participants with a missing value in a variable included in a

specific model were excluded from that particular analysis. Imaging

t-test analyses were implemented using the MATLAB library pack-

age.P-values<.05 (two-sided)were considered statistically significant.

Bonferroni-Holm multiple comparison correction was applied. Analy-

ses were performed using R version 4.1.0.

3 RESULTS

3.1 Tau cluster patterns

We identified four tau clusters (Table 1). Figure 1 compares the flortau-

cipir SUVRs from the four Aβ+ clusters versus the Aβ– CU reference

participants. The tau clusters (I–IV) presented a gradient of increas-

ing binding. Florbetapir composite score values and flortaucipir SUVRs

were lower in cluster I than in clusters II–IV (Figure S1 and Table S5

in supporting information). There were no differences in florbetapir

SUVRs among clusters II–IV. Conversely, all tau clusters showed differ-

ences in the averaged Braak V–VI area SUVRs and only clusters III and

IV showed similar values in averagedBraak III–IV area SUVRs. Clusters

II–IV showed no differences in flortaucipir Braak I area SUVRs (Figure

S1 and Table S5). Cluster I, the largest cluster, was subclustered in a

sensitivity analysis, identifying limbic predominant, parieto-occipital,

hippocampal sparing, and diffuse subclusters (Figure 2).

3.2 Cross-sectional characteristics of the tau
clusters

APOE ε4 prevalence was higher in the tau clusters I–III than the Aβ–
CU group (Table S4 in supporting information).Within the tau clusters,

there was a progressive increase of cognitively impaired participants

and ADAS-Cog13 scores (Figure 3, Tables S4 and Table S5) in support-

ing information. Tau clusters I and II participants were older than the

Aβ– CU group, whereas the tau cluster IV participants were younger.

SPARE-AD was higher in clusters II–IV compared to the reference
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F IGURE 3 Post hoc comparison among tau (A–D) and atrophy (E–H) clusters. Florbetapir composite score (A, E), age (B, F), ADAS-Cog13 (C,
G), andWMHvolume (D, H). ADAS-Cog13, Alzheimer’s Disease Assessment Scale, 13-itemCognitive subscale; C., cluster; CU, cognitively
unremarkable; Dif., diffuse; HSp, hippocampal sparing; LP, limbic predominant; Ref., reference (CU amyloid beta–negative participants);WMH,
white matter hyperintensity
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TABLE 2 Association of cluster and clinical diagnosis with longitudinal ADAS-Cog13 scores

Cognitively unremarkable Aβ negative reference

Flortaucipir clusters MRI clusters

Variables Coefficient (S.E.) P-value Variables Coefficient (S.E.) P-value

C. I 0.1 (0.12) .37 C. LP 0.2 (0.19) .35

C. II 1.0 (0.17) <.0001 C. HSp 0.1 (0.16) .52

C. III 3.1 (0.32) <.0001 C. Diffuse 0.9 (0.19) <.0001

C. IV 4.5 (0.51) <.0001

MCI 0.2 (0.14) .13 MCI 0.4 (0.17) .009

Dementia 1.0 (0.19) <.0001 Dementia 1.8 (0.23) <.0001

Aβ positive reference

C. II 0.9 (0.18) <.0001 C. HSp -0.1 (0.24) .81

C. III 3.1 (0.36) <.0001 C. Diffuse 0.8 (0.26) .0021

C. IV 4.8 (0.59) <.0001

MCI 0.2 (0.17) .16 MCI 0.5 (0.22) .022

Dementia 1.1 (0.24) <.0001 Dementia 2 (0.3) <.0001

Abbreviations: Aβ, amyloid beta; ADAS-Cog13, Alzheimer’s Disease Assessment Scale–13-item cognitive subscale; HSp, hippocampal sparing; LP, limbic pre-

dominant; MCI, mild cognitive impairment;MRI, magnetic resonance imaging; S.E., standard error.

Notes: Reference group for the analyses was the cognitively unremarkable Aβ negative participants on the top. Bottom half of the table had tau cluster I and

limbic predominant clusters as references for the tau andMRI analyses, respectively.

group (P-value < .0001) and cluster I (P-value < .0001). The brain

age gap was higher in clusters II–IV compared to the reference group

(P-value < .025) and in cluster IV compared to the other tau clusters

(P-value< .006; Figure 4A).

3.3 Longitudinal characteristics of tau clusters

Tau clusters II (HR = 15.9, P-value = .0001) and III (HR = 17.0, P-value

= .0009) were associated with faster progression from CU to MCI or

dementia compared to theCUAβ– reference group (cluster IV included

no CU participants; Figure 4C,D). Tau clusters II (HR = 6.2, P-value =

.005) and III (HR = 8.0, P-value = .013) remained significantly asso-

ciated with progression when we evaluated progression from CU to

MCI using the tau cluster I as reference. Tau clusters III (HR = 24.8, P-

value= .002) and IV (HR= 294.4, P-value= .002) were associatedwith

faster progression fromMCI to dementia than cluster I. Clusters II–IV

showed a more rapid cognitive decline than the CU Aβ– group and tau
cluster I. Conversely, cluster I presented no longitudinal ADAS-Cog 13

score differences (Table 2).

3.4 Atrophy clustering patterns

We identified three atrophy clusters among the Aβ+ participants

(Table 1). A limbic predominant atrophy cluster showed greater cin-

gulate and right hippocampus, inferior and middle temporal lobe atro-

phy than the CU Aβ– group (Figure 1). The diffuse atrophy cluster

showed greater parieto–occipital–temporal atrophy. The “hippocam-

pus sparing” atrophy cluster showed a similar atrophy pattern except

for greater atrophy in the temporal lobe.

3.5 Cross-sectional characteristics of atrophy
clusters

The limbic predominant cluster participants had a higher prevalence

of APOE ε4 than the hippocampal sparing cluster participants (Table 1

and Table S6 in supporting information). The three clusters had higher

ADAS-Cog13 and flortaucipir SUVR binding in all the Braak staging-

defined areas than the CU Aβ– reference group (Figure 3, Figure S1,

and Table S7 in supporting information). The diffuse atrophy cluster

had higherADAS-Cog13 scores, florbetapir composite scores, and flor-

taucipir SUVRs in all the Braak staging-defined areas than the two

other atrophy clusters. The diffuse atrophy cluster also included the

largest number of cognitively impaired participants. The hippocampal

sparing atrophy cluster participants were older and had higher WMH

volumes than the limbic predominant atrophy cluster and the CU Aβ–
reference group participants.

When we evaluated the SPARE-AD and brain age gap, we observed

that the diffuse atrophy cluster showed higher SPARE-AD values than

the hippocampal sparing (P < .0001) and limbic predominant atrophy

clusters (P< .0001; Figure 4B).Whenwe evaluated the SPARE-BAmis-

match, both the diffuse (P < .0001) and the hippocampal sparing atro-

phy cluster (P = .0004) showed larger values than the limbic predomi-

nant atrophy cluster.
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F IGURE 4 Biomarker and clinical association of imaging clusters. A, Plot showing themedian and interquartile range of Spatial Pattern of
Abnormality for Recognition of Early Alzheimer’s disease31 (SPARE-AD) (x-axis) and brain age gap (y-axis) for the four flortaucipir clusters. B,
Clinical progression from cognitively unremarkable (CU) tomild cognitive impairment (MCI)/dementia for tau clusters. C, Clinical progression
fromMCI to dementia for tau clusters. D, Plot showing themedian and interquartile range of SPARE-AD (x-axis) and brain age gap (y-axis) for the
threemagnetic resonance imaging (MRI) clusters. E, Clinical progression fromCU toMCI/dementia for atrophy clusters. F, Clinical progression
fromMCI to dementia for atrophy clusters. G, Prevalence for flortaucipir andMRI cluster combinations. H, I, Relative risk ratio (RRR) of
multinomial logistic regressionmodels evaluating the association between atrophy and tau clusters. In (H), multinomial logistic regressionmodels
with limbic predominant cluster as reference andwhite matter hyperintensities (WMH) volume and tau clusters as predictors (on the y-axis). In (I),
multinomial logistic regressionmodels with tau cluster I as reference and apolipoprotein E ε4 andMRI clusters as predictors (on the y-axis). The
red color indicates significant associations. Gray color indicates non-significant associations. X-scale is log-scaled. J, Prevalence for flortaucipir
subcluster andMRI cluster combinations. HSp, hippocampal sparing; LP, limbic predominant



10 of 14 TOLEDO ET AL.

3.6 Longitudinal characteristics of atrophy
clusters

Only thediffuse atrophy clusterwas associatedwith faster progression

from CU to MCI/dementia (HR = 16.6, P-value < .0001) compared to

the CU Aβ– group and from MCI to dementia compared to the limbic

predominant atrophy cluster (HR = 4.4, P-value = .042; Figure 4E,F).

The diffuse atrophy cluster remained significantly associatedwith clin-

ical progression (HR=6.1,P-value= .022)whenweevaluated progres-

sion from CU toMCI including using the limbic predominant cluster as

reference. Similarly, only the diffuse atrophy cluster presented a faster

ADAS-cog13 decline (Table 2).

3.7 Comparison of atrophy and tau cluster
membership

The overlap between the different atrophy and tau clusters is summa-

rized in Tables S8-S11 in supporting information and Figure 4G-I.APOE

ε4 presencewas a predictor of tau cluster II. Conversely,WMHvolume

was a significant predictor of atrophy clusters.Weobservedno interac-

tions between the variables (APOE andWMH) and the imaging clusters

(data not shown).

The hippocampal sparing atrophy cluster was associated with a

lower relative risk ratio (RRR) of belonging to tau clusters II-IV and a

higher RRR for tau PET cluster I. In contrast, the diffuse atrophy clus-

terwas associatedwith a greater RRRof belonging to tau clusters II–IV

and lower RRRwith tau cluster I.

When we evaluated the subclusters within tau cluster I (Figure 4J),

the tau limbic predominant subcluster was mainly composed of lim-

bic predominant atrophy cluster participants (50%), and the hippocam-

pal sparing tau subcluster mainly consisted of hippocampal sparing

atrophy cluster participants (63.4%). The hippocampal sparing atrophy

cluster was evenly distributed between the tau hippocampal sparing

and parieto-occipital subclusters (33.8% each).

4 DISCUSSION

To our knowledge, this is the first article that presents structural MRI

and flortaucipir PET scan clustering across the biomarker-defined AD

continuum. Our data-driven clustering approach identified partially

overlapping tau and atrophy clusters. MRI atrophy-defined clusters

represented three different spatial atrophy patterns, whereas flor-

taucipir binding-defined clusters identified progressive tau accumula-

tion. Spatial distribution-based flortaucipir subclusters were identified

within the least severe tau cluster (cluster I). Tau clusters showed a

stronger associationwith cross-sectional and longitudinal clinicalmea-

sures thanMRI atrophy-defined clusters. Finally, associations between

atrophy-defined and flortaucipir binding-defined clusters were differ-

entially modulated by APOE genotype and WMH volume (Figure 2).

Our results imply that stratification approaches across different imag-

ing modalities capture various aspects of genetic, neurodegenerative,

and vascular processes and how genetic and vascular lesions mod-

ulate the association between neuroimaging modalities. These find-

ings have implications for designing personalized multimodal imaging-

based approaches for individualized prognosis and stratification in the

era of precisionmedicine.

4.1 Tau clusters

Tau clusters showed progressive accumulating tau deposition. Clusters

I and II showed higher tracer binding in the medial and lateral tempo-

ral areas. Clusters III and IV had the highest flortaucipir binding and

only showed statistical differences in flortaucipir SUVRs inBraak areas

V and VI. Cluster IV included younger participants than all the other

clusters. A higher tau deposition in younger cognitively impaired sub-

jects has previously been reported in autopsy studies and a previous

flortaucipir clustering article.25,42 This higher flortaucipir binding likely

represents a combination of faster deposition in young-onset subjects,

greater cognitive reserve, and a lower degree of co-pathologies. This is

supported by a similar performance on theADAS-Cog13 in tau clusters

III and IV. Tau cluster IV showed similar SPARE-AD scores as clusters II

and III, indicating a similar degree of AD-like brain atrophy but a higher

brain age gap than the other tau clusters indicating accelerated brain

aging.

Braak area I showedanearly celling effect andnodifferences among

the four clusters (Figure S1). Conversely, Braak areas V–VI differed

among all the clusters, whereas Braak areas III–IV were similar in the

most severe clusters (III and IV). These findings have implicationswhen

evaluating summarymeasures for tau imaging biomarkers.

WMH load was higher in tau clusters I–III compared to the Aβ– CU
group. This is consistent with previous findings of larger WMH vol-

umes in AD subjects.20,34,43 Tau cluster IV showed no statistical dif-

ferences in WMH volume compared to the Aβ– CU reference group.

This could be a combination of lower statistical power due to sam-

ple size. The florbetapir composite score showed no differences in tau

clusters II–IV, indicating an earlier ceiling effect for Aβ compared to

tau.24

Tau cluster I showed similar clinical progression rates during follow-

up in terms of progression to MCI/dementia or ADAS-Cog 13 changes

as theAβ–CUreference group. Therefore, this cluster likely represents

an early stage in the AD continuum in which biomarker changes are

present but not leading to a significantly faster decline. On the other

hand, tau clusters II–IV showed a more rapid clinical progression and

greater ADAS-Cog13 increase.

Our sensitivity analysis of the largest tau cluster, cluster I, identified

subclusters that had different topographical distributions; a limbic pre-

dominant, a hippocampal sparing, a parieto-occipital, and a diffuse tau

PET clusters with similar distributions have been recently described,

but their relation toMRI-based atrophy clusters remained unknown in

that study.25 Our analysis shows that differences among these clusters

are present in the earliest disease stages. The results by Vogel et al.25

also showed that in the highest/most severe SusTain stages therewas a

convergence of the tau deposition patterns into a single severe cluster.
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This was an exploratory analysis. Future studies with longer follow-up

and larger sample will be needed to evaluate their clinical implications.

4.2 Association of the atrophy clusters

The limbic predominant, hippocampal sparing, and diffuse atrophy pat-

terns have been described in autopsy and imaging studies.3,16 Our

study showed that the hippocampal sparing atrophy cluster had lower

APOE ε4 prevalence and greater WMH volume than the limbic pre-

dominant atrophy cluster. However, the hippocampal sparing and the

limbic predominant atrophy clusters had similar Braak area-defined

flortaucipir SUVRs, florbetapir composite, and ADAS-Cog13 scores.

Hippocampal sparing participants were older, and their atrophy also

matched the one associated with pathological brain aging,17 rather

than the one observed in AD,31,34 as demonstrated by the SPARE-AD

and brain age gap analyses. Brain aging patterns have been associated

with a predominant frontoparietal pattern and less of a medial tem-

poral pattern, more characteristic of AD dementia.31,33 These would

indicate that age-related mechanisms other than AD pathology might

cause atrophy and associated cognitive impairment.1,44,45 Previous

reports showed that age-related pathologies could impact the regional

neurodegeneration patterns and coexist with AD,17,19 with increased

WMH in diffuse AD atrophy patterns.14 Our analyses indicate greater

WMH importance in participants with a neocortical atrophy pattern,

who were also older. Previous studies have described the largest bur-

den of WMH volumes in limbic predominant cases with intermedi-

ate burden in hippocampal sparing cases.46 One difference is that the

study by Ferreira et al.46 included participants with dementia, whereas

participants inour limbicpredominant andhippocampal sparinggroups

mainly included CU and MCI participants. WMHs explained a greater

variance of the MRI than the tau cluster grouping. They were associ-

ated with the hippocampal sparing and diffuse atrophy clusters when

evaluating the association with the tau clusters. This indicates that

WMHs are related to the imaging clusters (and patterns of atrophy),

but not with the tau clusters (burden of tau deposition). WMHs repre-

sent a combination of axonal loss resulting from demyelination, Wal-

lerian degeneration, and small vessel disease related to brain atrophy,

but not conditioned by the tau burden based on our results.19,43,47

4.3 Comparison of structural MRI and flortaucipir
clusters

The hippocampal sparing atrophy cluster was associated with tau clus-

ter I, which had the lowest flortaucipir binding. The lowerAβbiomarker

values indicate that this atrophy cluster is most likely the result of non-

AD pathology. Therefore, this atrophy pattern is probably unrelated

to the hippocampal sparing tau distribution subtype described by neu-

ropathological studies.3

Conversely, tau clusters II–IV were associated with an increased

presence of a diffuse atrophy cluster. This indicated that increasing tau

pathology is associated with a classic diffuse AD pattern. This atrophy

cluster showed the largest atrophy in the temporal lobe and an overall

distribution matching Braak’s neurofibrillary tangle staging.48 This is

consistent with neuropathological studies showing that AD pathology

(mainly tau) explains the largest proportion of cognitive impairment in

subjects with dementia.

The limbic predominant atrophy cluster was associated with an

increased risk of being in tau cluster II and a lower risk of being amem-

ber of tau clusters III/IV, indicating that it corresponds to an inter-

mediate stage along the AD pathology continuum. Brain bank studies

and initial ADNI neuropathology studies have shownmultiple patholo-

gies in the brain of aging individuals with cognitive impairment.1,44,49

Therefore, it is not unexpected that there is incomplete overlap

between amodality that captures deposition of a single misfolded pro-

tein (flortaucipir) versus a downstream imagingmodality that captures

various brain insults (brainMRI).

When the fit of the different longitudinal models was compared,

tau clusters showed a lower Akaike information criterion (AIC; better

fit) for the ADAS-Cog13 and the MCI to dementia progression models

(Table S12 in supporting informaiton). In themodel evaluating progres-

sion of CU participants, the model that evaluated theMRI clusters had

a lower AIC (although value was close to PET clusters).

4.4 Strengths and limitations

Previous studies evaluated neuroimaging heterogeneity in AD pat-

terns using a hypothesis-driven study design that classified indi-

vidual MRI scans into predefined subtypes based on pathological

or cognitive profiles demonstrating a rough typical versus atypical

AD presentation.50–53 These studies suffer from various limitations,

including using a priori groups and thresholds, which could not dis-

cover patterns beyond the prior definitions of the groups using arbi-

trary thresholds to define these groups. Therefore, increasing atten-

tion has been given to unsupervised clustering approaches on regional

neuroimaging features, mainly MRI, to uncover the heterogeneity in

AD6 by finding groups with similar neuroimaging patterns. From a

methodological perspective, approaches mainly differ in (1) clustering

techniques, (2) validation methods, and (3) features used. Our method

defines the groups at an individual level while at the same time fully

exploiting correlations between the features, grouping them in covari-

ance patterns, increasing clustering robustness. Compared to classic

clusteringmethods (k-means and k-medoids), RCC exploits differences

between features and uses the differences between heterogeneous

groups of samples to learn a discriminative low dimensional represen-

tation. Compared to previous matrix tri-factorization techniques,26,54

RCC uses adaptive sparsity regularization to make the matrix tri-

factorization performance robust against noise. After denoising via

sparsity regularization, the collaborative clustering procedure is more

robust, leading tomore accurate groupingof both samples and features

for clinical analysis. We also included machine learning-derived brain

indices to assess the degree of AD-like and brain aging atrophy.31,32,34

Our paper is among the first to define AD spectrum subtypes

using an advanced imaging machine learning method.6,25,55,56 Most
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data-driven neuroimaging studies on AD subtyping and related

methodological development have focused onMRI data.6 The number

of studies performing primary clustering on flortaucipir scans is more

limited.25 A difference in our study is that we performed simultaneous

clustering of structural MRI data and flortaucipir PET scans.

Limitations of the study include the relatively short clinical follow-

up, the large proportion of CU participants, the small number of partic-

ipants in tau clusters III and IV, and the limited representation ofminor-

ity and underserved populations. In addition, unsupervised learning

techniques like clustering aim to discover and measure the differences

between the data samples, based on which the underlying data groups

are identified. However, in the neuroimaging applications, the cluster-

ingmethod does not differentiatewhether such differences come from

different stages or from different subtypes. As a result, the clustering

results can reflect both stages and subtypes. Adjusting for averaged

Braak area flortaucipir scores led to a three cluster solution which also

was based on severity (data not shown).

5 CONCLUSION

Theunsupervised clustering approach identified an incompleteoverlap

between the neuroimaging patterns. These results indicate that each

neuroimaging modality captures different aspects of heterogeneity

across the Aβ cognitive impairment spectrum. Moreover, APOE geno-

type and WMH differentially modified the association of the clusters

and brain aging patterns were only associated with the brain atro-

phy patterns, not tau. Finally, tau clusters showed a stronger associ-

ation with clinical progression. Atrophy clusters identified different

atrophy patterns, likely reflecting different patterns of co-pathology,

which is consistent with MRI capturing downstream changes of mul-

tiple brain pathologies. Our analyses point to the complexity of numer-

ous pathologies that can present different distributions with additive

deleterious effects on the brain and are captured in various degrees by

different neuroimaging modalities. Future studies should assess TDP-

43 and α-synuclein pathology, which cannot be evaluated with cur-

rent neuroimaging tools, and additional dementia risk factors. Pre-

cise determination of injury patterns across complementary biomarker

data offers the opportunity to phenotype these subjects and iden-

tify how different contributing factors affect their brains. This pheno-

typic characterization has implications for clinical trial recruitment and

stratification and individual subjects’ prognosis.
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